Accessing diagnostic estimate data
Source:R/accessors.R
, R/triptych_mcbdsc.R
, R/triptych_murphy.R
, and 2 more
estimates.Rd
Accessing diagnostic estimate data
Usage
estimates(x, at, ...)
# S3 method for triptych_mcbdsc
estimates(x, ...)
# S3 method for triptych_murphy
estimates(x, at = NULL, ...)
# S3 method for triptych_reliability
estimates(x, at = NULL, ...)
# S3 method for triptych_roc
estimates(x, at = NULL, p1 = mean(observations(x)), ...)
Arguments
- x
An object from which the estimate information should be extracted.
- at
A vector of thresholds where
x
should be evaluated.- ...
Additional arguments passed to other methods.
- p1
The unconditional event probability. Used in combination with
at
to determine the diagonal lines along which to determine the estimate.
Value
A tibble with the relevant information describing the diagnostic estimate (Murphy curve, reliability curve, ROC curve, score decomposition) for all supplied forecasting methods.
For a Murphy curve, a tibble with columns: forecast
, knot
(the threshold value), limit
("left" or "right" in knot
, only present if at = NULL
), mean_score
.
For a reliability curve, a tibble with columns: forecast
, CEP
, x
(the knots of the isotonic regression estimate).
For a ROC curve, a tibble with columns: forecast
, FAR
(false alarm rate), HR
(hit rate).
For a MCBDSC decomposition, a tibble with columns: forecast
, mean_score
, MCB
(miscalibration), DSC
(discrimination), UNC
(uncertainty).
Examples
data(ex_binary, package = "triptych")
tr <- triptych(ex_binary)
estimates(tr$murphy)
#> # A tibble: 20,018 × 4
#> forecast knot limit mean_score
#> <chr> <dbl> <chr> <dbl>
#> 1 X01 0 left 0
#> 2 X01 0 right 0
#> 3 X01 1.19e-23 left 1.24e-23
#> 4 X01 1.19e-23 right 1.24e-23
#> 5 X01 3.84e-23 left 4.00e-23
#> 6 X01 3.84e-23 right 3.99e-23
#> 7 X01 9.45e-22 left 9.83e-22
#> 8 X01 9.45e-22 right 9.81e-22
#> 9 X01 9.82e-20 left 1.02e-19
#> 10 X01 9.82e-20 right 1.02e-19
#> # ℹ 20,008 more rows
estimates(tr$reliability)
#> # A tibble: 374 × 3
#> forecast CEP x
#> <chr> <dbl> <dbl>
#> 1 X01 0 1.19e-23
#> 2 X01 0 5.70e- 2
#> 3 X01 0.1 5.77e- 2
#> 4 X01 0.1 1.24e- 1
#> 5 X01 0.167 1.25e- 1
#> 6 X01 0.167 1.54e- 1
#> 7 X01 0.3 1.56e- 1
#> 8 X01 0.3 1.84e- 1
#> 9 X01 0.321 1.87e- 1
#> 10 X01 0.321 3.06e- 1
#> # ℹ 364 more rows
estimates(tr$roc)
#> # A tibble: 197 × 3
#> forecast FAR HR
#> <chr> <dbl> <dbl>
#> 1 X01 1 1
#> 2 X01 0.395 1
#> 3 X01 0.308 0.990
#> 4 X01 0.280 0.983
#> 5 X01 0.266 0.977
#> 6 X01 0.197 0.941
#> 7 X01 0.176 0.929
#> 8 X01 0.148 0.906
#> 9 X01 0.140 0.900
#> 10 X01 0.0766 0.843
#> # ℹ 187 more rows
estimates(tr$mcbdsc)
#> # A tibble: 10 × 5
#> forecast mean_score MCB DSC UNC
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 X01 0.0827 0.00474 0.172 0.250
#> 2 X02 0.127 0.0233 0.146 0.250
#> 3 X03 0.134 0.0172 0.132 0.250
#> 4 X04 0.194 0.0587 0.114 0.250
#> 5 X05 0.222 0.0723 0.100 0.250
#> 6 X06 0.180 0.00494 0.0748 0.250
#> 7 X07 0.212 0.0211 0.0590 0.250
#> 8 X08 0.235 0.0263 0.0410 0.250
#> 9 X09 0.303 0.0818 0.0282 0.250
#> 10 X10 0.312 0.0772 0.0148 0.250