Accessing confidence/consistency region data
Source:R/accessors.R
, R/triptych_mcbdsc.R
, R/triptych_murphy.R
, and 2 more
regions.Rd
Accessing confidence/consistency region data
Usage
regions(x, ...)
# S3 method for triptych_mcbdsc
regions(x, ...)
# S3 method for triptych_murphy
regions(x, ...)
# S3 method for triptych_reliability
regions(x, ...)
# S3 method for triptych_roc
regions(x, ...)
Arguments
- x
An object from which the region information should be extracted.
- ...
Additional arguments passed to other methods.
Value
A tibble with the relevant information for the uncertainty quantification of the chosen diagnostic (Murphy curve, reliability curve, ROC curve, score decomposition) for all supplied forecasting methods.
For a Murphy curve, a tibble with columns: forecast
, threshold
, lower
, upper
, method
, level
.
For a reliability curve, a tibble with columns: forecast
, x
(forecast values), lower
, upper
, method
, level
.
For a ROC curve, a tibble with columns: forecast
, FAR
(false alarm rate), HR
(hit rate), method
, level
.
This tibble is twice as long as those for Murphy and reliability curves,
since the FAR-HR pairs are ordered to describe a polygon, generated by pointwise confidence
intervals along diagonal lines with slope \(-\pi_0/\pi_1\).
Here, \(\pi_1 = 1 - \pi_0\) is the unconditional event probability.
Examples
data(ex_binary, package = "triptych")
# Bootstrap resampling is expensive
# (the number of bootstrap samples is small to keep execution times short)
tr <- triptych(ex_binary) |>
dplyr::slice(1, 9) |>
add_confidence(level = 0.9, method = "resampling_cases", n_boot = 20)
regions(tr$murphy)
#> # A tibble: 2,000 × 6
#> forecast threshold lower upper method level
#> <chr> <dbl> <dbl> <dbl> <chr> <dbl>
#> 1 X01 0 0 0 resampling_cases_20 0.9
#> 2 X01 0.00100 0.000605 0.000731 resampling_cases_20 0.9
#> 3 X01 0.00200 0.00116 0.00140 resampling_cases_20 0.9
#> 4 X01 0.00300 0.00169 0.00201 resampling_cases_20 0.9
#> 5 X01 0.00400 0.00222 0.00261 resampling_cases_20 0.9
#> 6 X01 0.00501 0.00271 0.00321 resampling_cases_20 0.9
#> 7 X01 0.00601 0.00318 0.00381 resampling_cases_20 0.9
#> 8 X01 0.00701 0.00359 0.00436 resampling_cases_20 0.9
#> 9 X01 0.00801 0.00400 0.00492 resampling_cases_20 0.9
#> 10 X01 0.00901 0.00450 0.00550 resampling_cases_20 0.9
#> # ℹ 1,990 more rows
regions(tr$reliability)
#> # A tibble: 1,998 × 6
#> forecast x lower upper method level
#> <chr> <dbl> <dbl> <dbl> <chr> <dbl>
#> 1 X01 1.19e-23 0 0 resampling_cases_20 0.9
#> 2 X01 3.84e-23 0 0 resampling_cases_20 0.9
#> 3 X01 9.45e-22 0 0 resampling_cases_20 0.9
#> 4 X01 9.82e-20 0 0 resampling_cases_20 0.9
#> 5 X01 1.13e-19 0 0 resampling_cases_20 0.9
#> 6 X01 4.73e-17 0 0 resampling_cases_20 0.9
#> 7 X01 1.40e-16 0 0 resampling_cases_20 0.9
#> 8 X01 6.33e-16 0 0 resampling_cases_20 0.9
#> 9 X01 1.48e-15 0 0 resampling_cases_20 0.9
#> 10 X01 7.97e-15 0 0 resampling_cases_20 0.9
#> # ℹ 1,988 more rows
regions(tr$roc)
#> # A tibble: 4,004 × 5
#> forecast FAR HR method level
#> <chr> <dbl> <dbl> <chr> <dbl>
#> 1 X01 0 0 resampling_cases_20 0.9
#> 2 X01 0 0.00209 resampling_cases_20 0.9
#> 3 X01 0 0.00418 resampling_cases_20 0.9
#> 4 X01 0 0.00628 resampling_cases_20 0.9
#> 5 X01 0 0.00837 resampling_cases_20 0.9
#> 6 X01 0 0.0105 resampling_cases_20 0.9
#> 7 X01 0 0.0126 resampling_cases_20 0.9
#> 8 X01 0 0.0146 resampling_cases_20 0.9
#> 9 X01 0 0.0167 resampling_cases_20 0.9
#> 10 X01 0 0.0188 resampling_cases_20 0.9
#> # ℹ 3,994 more rows